

ROLE OF ZINC AND BORON IN ENHANCING PHYSIOLOGICAL ATTRIBUTES OF RICE IN SALINE ENVIRONMENT

B. Rajeshwari^{1*}, Suma R.¹, Ananthakumar M. A.², Keshavaiah K. V.³ and Chandrappa⁴

¹Dept. of Soil Science and Agricultural Chemistry, College of Agriculture, V.C. Farm, Mandya-571405, Karnataka, India

²Department of Soil Science & Agriculture Chemistry, Water Technology Centre
ZARS, V. C. Farm, Mandya, Karnataka, India

³Professor and Plant scientist (sugarcane), Jaggery Park, ZARS, V. C. Farm, Mandya, Karnataka, India

⁴Dept. of Horticulture, CoA, V. C. Farm, Mandya, Karnataka, India

*Corresponding author E-mail: rajeshwarinadagouda99@gmail.com

(Date of Receiving : 18-08-2025; Date of Acceptance : 30-10-2025)

A field experiment was conducted during Kharif 2022-23 at the College of Agriculture, V.C. Farm, Mandya, using factorial RCBD. The study involved two factors: soil application (SA) of zinc sulfate at three levels (0, 20 and 40 kg ha⁻¹ - Zn₀, Zn₂₀ and Zn₄₀) and three times foliar sprays (FS) of boric acid at four levels (0, 0.25, 0.5 and 0.75 % - B₀, B_{0.25}, B_{0.5} and B_{0.75}). The objective was to assess the impact on salt stress in rice. The experimental design aimed to combine the effects of soil application zinc and foliar spray of boron on to evaluate rice growth under-salt stress conditions. The salt stress tolerance indices in rice include relative water content, SPAD values, chlorophyll a, chlorophyll b and total chlorophyll were in higher amounts and proline, Na⁺/K⁺ and Na⁺/Ca²⁺ in index leaves and roots of rice were in lower amounts with Zn₄₀+B_{0.75} and Zn₄₀+B_{0.5}, after a week of first and second spray. However, after third FS of B, Zn₄₀+B_{0.25} recorded higher relative water content (90.23 %), SPAD values (42.50), chlorophyll a (2.24 mg g⁻¹), chlorophyll b (2.00 mg g⁻¹) and total chlorophyll contents (4.58 mg g⁻¹) and lower amounts of proline (1.30 mg g⁻¹). The same treatment combination was found to be most effective in reducing the Na⁺ (0.32) concentration only in index leaves and enhancing the K⁺ (1.86) and Ca²⁺ (0.37), resulting in the lowest Na⁺/K⁺ ratio (0.17) and Na⁺/Ca²⁺ ratio (0.86), whereas in rice roots Zn₄₀+B_{0.75} even week after 3rd spray recorded lower Na⁺ (0.74) enhanced K⁺ (1.50) and Ca²⁺ (0.98) resulting in lowest Na⁺/K⁺ ratio (0.50) and Na⁺/Ca²⁺ ratio (0.76), indicating SA of Zn at 40 and three FS of B at 0.25 per cent is better strategies for rice cultivation to overcome salt stress.

Keywords : Proline, chlorophyll content, SPAD values, Relative water content, Na⁺/Ca²⁺, Na⁺/K⁺

Introduction

Rice (*Oryza sativa* L.) is a vital cereal crop which is staple food for 70 per cent of world population. Globally rice is cultivated in an area of 164.19 m ha with production of 514.80 m t (FAO, 2022; SRD, 2022). In India, rice is cultivated in an area of 46.27 m ha with a production and productivity of 129.47 m t and 2798 kg ha⁻¹, respectively. In Karnataka, it is being grown in 1.39 m ha area with annual production and productivity of 431.83 m t and 3089 kg ha⁻¹, respectively (INDIASTAT, 2022).

Salt stress is a major abiotic factor influencing crop productivity, impacting over 833 million hectares of arable land globally (FAO, 2022). It leads to

reduced photosynthesis, stomatal conductance, transpiration Cattivelli *et al.* (2008) and water use efficiency (WUE) in rice plants (Ramezani *et al.*, 2012), negatively influencing biomass and seed yield (Gholipoor *et al.*, 2002). Salt stress has been shown to have molecular and biological impacts, affecting rice physiology (Munns, 2002; Tester and Davenport, 2003). These physiological disruptions result in abnormal growth and development, potentially causing plant death (Prida and Das, 2005).

Zinc improves resistance to salt stress in rice by enhancing biological and physiological activities (Latef *et al.*, 2017) including biosynthesis of photosynthetic pigments, modifying stomata and trichome morphology. It boosts K⁺ absorption and lowering Na⁺

ion levels and enhances the activity of antioxidant enzymes such as glutathione, ascorbate peroxidase, superoxide dismutase and catalases, which aid in scavenging reactive oxygen species (Faizan *et al.*, 2021; Singh *et al.*, 2021). Additionally, zinc binds to phospholipids and sulphydryl groups to maintain cell membranes, especially in stressful situations (Hafeez *et al.*, 2013).

Boron is a crucial micronutrient for plants, playing vital roles in growth, development and stress protection. It regulates physiological processes, enhances antioxidant defense components and improves cytoskeletal integrity especially under salt stress. B supplementation reduces malondialdehyde levels and electrolyte leakage while stimulating the methylglyoxal detoxification through upregulation of glyoxalase system's activity. There by it supports water relations, nitrogen metabolism, chlorophyll synthesis (Alharby *et al.*, 2021) and cell wall development. Additionally, B is essential for the formation of pollen tubes, seed development, floret fertility (Wang *et al.*, 2003; Oosterhuis, 2001) and the synthesis of phenolic compounds.

Materials and Methods

The experiment was carried out at College of Agriculture, Vishweshwaraiah Canal Farm, Mandya, India during *Kharif* 2022. The experimental site was classified as *Alfisols* with sandy clay loam with saline soil reaction (8.47), electrical conductivity (0.72 dSm⁻¹) was low and organic carbon content (5.81 g kg⁻¹) was found to be medium. The available nitrogen (237.08 kg ha⁻¹), phosphorus (28.93 kg P₂O₅ ha⁻¹) and potassium (198.09 kg K₂O ha⁻¹) was medium. The experiment was laid out in 3 × 4 Factorial Randomized Complete Block Design (Factorial-RCBD) with twelve treatment combinations and three replications (Table)

Table 1: Treatment combinations:

Zn ₀ B ₀	No Zinc sulfate + No Boric acid
Zn ₀ B _{0.25}	No Zinc sulfate + FA of Boric acid @0.25 %
Zn ₀ B _{0.5}	No Zinc sulfate + FA of Boric acid @0.5 %
Zn ₀ B _{0.75}	No Zinc sulfate + FA of Boric acid @0.75 %
Zn ₂₀ B ₀	SA of Zinc sulfate @ 20 kg + No Boric acid
Zn ₂₀ B _{0.25}	SA of Zinc sulfate @ 20 kg + FA of Boric acid @0.25 %
Zn ₂₀ B _{0.5}	SA of Zinc sulfate @ 20 kg + FA of Boric acid @0.5 %
Zn ₂₀ B _{0.75}	SA of Zinc sulfate @ 20 kg + FA of Boric acid @0.75 %
Zn ₄₀ B ₀	SA of Zinc sulfate @ 40 kg + No Boric acid
Zn ₄₀ B _{0.25}	SA of Zinc sulfate @ 40 kg + FA of Boric acid @0.25 %
Zn ₄₀ B _{0.5}	SA of Zinc sulfate @ 40 kg + FA of Boric acid @0.5 %
Zn ₄₀ B _{0.75}	SA of Zinc sulfate @ 40 kg + FA of Boric acid @0.75 %

Note: RDF - Recommended dose of fertilizer (125:62.5:62.5 N: P₂O₅: K₂O kg ha⁻¹) and Farm yard manure @12.5 t ha⁻¹ are common for all the treatments

FA- Foliar application of Boric acid at required concentration was sprayed at 15, 30 and 45 days after transplanting

SA- Soil application of Zinc sulfate at required rate was applied on the day of transplanting

In the present experiment, rice (*Oryza sativa* L.) variety MSN 99 was grown as the test crop. Two raised nursery beds of size 10 m length and 1.5 m breadth were prepared. Well decomposed 85 kg of farm yard manure and 0.60 kg urea, 0.85 kg SSP and 0.25 kg MOP fertilizers were applied uniformly to both the beds. The main plots were then prepared after 15 days with gross plot and net plot size of 8.2 m × 2.8 m and 7.4 m × 2.4 m, respectively. The recommended FYM (12.5 t ha⁻¹) and N: P₂O₅: K₂O for salt affected soil *i.e.*, 125: 62.5: 62.5 kg ha⁻¹ was supplied using Urea, Di Ammonium Phosphate (DAP) and Muriate of potash (MOP) respectively.

Application of zinc and boron

Soil application zinc sulfate

Soil application of zinc in the form of ZnSO₄·7H₂O at the rate of 20 and 40 kg ha⁻¹ was applied at the time of transplanting, which amounts to 2 and 4 g per m² respectively.

Foliar application of boric acid

Foliar spray of boron was sprayed in three intervals as per the treatment requirements. The first foliar spray was carried out after 15 days of transplanting (DAT), and the second and third spray at 30 DAT and 45 DAT and the pH of the boric acid was maintained around 6 to 6.5 by potassium hydroxide. The boric acid (17.5 % B) dissolved at the rate of 2.50, 5.00 and 7.50 g L⁻¹ for obtaining 0.25, 0.50 and 0.75 per cent concentrations. The total spray volume of 250, 300 and 500 litres per ha⁻¹ was used for 1st, 2nd and 3rd foliar spray respective of total amount of 2.65 and 5.25 and 7.88 kg ha⁻¹ of boric acid for 0.25, 0.50 and 0.75 per cent foliar sprays (cumulative of 3 sprays).

Recording Physiological attributing parameters

Estimation of Na⁺, K⁺ and Ca²⁺ Concentrations in roots and Index leaves

Potassium and Sodium in the plant sample was analysed by flame photometer (Piper, 1966). Calcium was analysed using standard EDTA after adding necessary reagents required for calcium as described by Piper, (1966).

SPAD readings

SPAD (SPAD-502, MINLOTA Japan) chlorophyll was used to measure the amount of chlorophyll in random five leaves of each treatment at tillering, grand growth and panicle initiation stages respectively.

Estimation of Relative water content (%)

Leaf relative water content (RWC) was estimated by recording fresh weight and leaf sample immersed in water overnight and turgid weight was recorded. Samples were kept in hot air oven and the dry weight was recorded until a constant weight was reached. The relative content was then determined using the formula provided by (Weatherley, 1950)

$$RWC(\%) = \frac{\text{Fresh weight} - \text{Dry weight}}{\text{Turgid weight} - \text{Dry weight}} \times 100$$

Estimation of Photosynthetic pigments (mg g⁻¹)

Total chlorophyll, chlorophyll a and chlorophyll b and contents were determined by spectrophotometrically (Agilent - carry 60 UV-Vis) at 645, 663 and 480 nm following the method of Arnon, (1949).

$$\text{Chlorophyll a (mg/ml)} = 0.0127 \times A663 - 0.0027 \times A645$$

$$\text{Chlorophyll b (mg/ml)} = 0.0229 \times A645 - 0.0046 \times A663$$

$$\text{Total chlorophyll (mg/ml)} = 0.0202 \times A645 + 0.00802 \times A663$$

Estimation of Proline content (mg g⁻¹)

According to Bates *et al.* (1973), the proline content was calculated using the absorbance measured in an Agilent spectrophotometer (Agilent - carry 60 UV-Vis).

A standard curve was used to calculate the proline concentration at 520 nm using a fresh weight basis.

$$\text{Proline (mg/g)} = \frac{X}{2} \times \frac{10}{500} \times 1000$$

Results

Effect of zinc and boron on sodium, potassium and calcium concentration in rice

Higher concentration of Na⁺ both in roots (0.80 %) and index leaves (0.45 %) and lowest K⁺ and Ca²⁺ content correspondingly resulting in higher Na⁺/K⁺ (0.79 and 0.61) and Na⁺/Ca²⁺ (1.28 and 1.88) was noticed in the treatment with no zinc and boron application (Zn₀+B₀). Soil application of zinc and foliar spray of boron at different levels reduced the Na⁺ content. Soil application of zinc at 40 kg ha⁻¹ and spray of boron at 0.75 % was found to be more effective in reducing Na⁺ concentration both in root and index leaves week after 1st spray and enhanced the accumulation of K⁺ and Ca²⁺, resulting in the lowest Na⁺/K⁺ (0.56 and 0.32) and Na⁺/Ca²⁺ (0.75 and 0.94) in root and index leaves, respectively (Table 2).

The data on relative concentrations of ions in rice roots recorded after 1 week of second foliar spray of boron (WA-SS) showed (Table 3) similar trend

indicating maximum concentration of K⁺ (1.25 %), Ca²⁺ (0.88 %) and lowest Na⁺ (0.70 %), Na⁺/K⁺ (0.55) and Na⁺/Ca²⁺ (0.76) with Zn₄₀+B_{0.75}. However, effect B spray as such did not show significant variation with respect to K⁺ and Na⁺. The relative concentration of Na⁺ in index leaves decreased with increased amount of Zn but foliar application of B recorded decreasing trend up to 0.5 % (0.36 %) while, 0.75 % accumulated higher Na⁺ (0.40 %) as compared to 0.25% (0.39 %) however, was lesser than B₀ (0.51%). The higher amount of K⁺ and Ca²⁺ was recorded with application of 40 kg ha⁻¹ Zn and 0.5 per cent foliar spray of B. Lowest Na⁺/K⁺ and Na⁺/Ca²⁺ was noted in the same treatment and further increase in B to 0.75 per cent enhanced these parameters in index leaves.

The Na⁺, Na⁺/K⁺ and Na/Ca²⁺ content in rice roots after one week 3rd spray of boron (WA-TS) revealed a decreasing trend when the rate of Zn and B application increased, recording lowest amount of 0.74 per cent, 0.50 per cent and 0.76 per cent, respectively in Zn₄₀+B_{0.75}. The same treatment recorded highest K⁺ (1.5 %) and Ca²⁺ (0.98 %) in rice roots (Table 4). The concentration of these ions in index leaves showed similar variation with increasing rate of soil application of Zn *i.e.*, Na⁺, Na⁺/K⁺ and Na⁺/Ca²⁺ and increased K⁺ and Ca²⁺ but the foliar spray of B was effective only up to 0.25 % that recorded lowest Na⁺ (0.32 %), Na⁺/K⁺ (0.17) Na⁺/Ca²⁺ (0.86) and further increasing its concentration to 0.5 and 0.75 % increased these parameters.

Relative water content

The interactive effects of zinc and boron levels recorded significant variation. The highest amount of 77.86 % was recorded with Zn₄₀+B_{0.75} followed by 76.34 and 75.21 % in Zn₄₀+B_{0.5} and Zn₄₀+B_{0.25} as compared to amounts of 65.34 % in Zn₀+B₀ at WA-FS. However, the RWC after second and third spray showed variation recording decreased trend with B_{0.75} as compared to B_{0.5} and B_{0.25} with or without Zn. The highest RWC of 88.23 % and 90.23 % was noticed in Zn₄₀+B_{0.5} and Zn₄₀+B_{0.25} after WA-SS and WA-TS, respectively.

Effect of zinc and boron on proline content in rice

In the interactive effect of Zn and B the proline was significant at all stages and lowest content of 0.74 mg g⁻¹ was recorded with Zn₄₀+B_{0.75} at WA-FS. However, after successive 2nd and 3rd B spray the proline content has enhanced to 1.23 and 1.55 mg g⁻¹, respectively in the same treatment. The treatment Zn₄₀+B_{0.25} was found better in overcoming the salinity oxidative stress by accumulating the lowest proline

content of 1.30 mg g^{-1} at WA-TS as compared to other treatments.

Effect of zinc and boron on photosynthetic pigments and SPAD values in rice

The interactive effect of Zn and B showed significant protection to photosynthetic pigments by overcoming the salinity stress. Single spray of $\text{Zn}_{40}\text{B}_{0.75}$ was found most effective at early stages (WA-FS) that recorded highest SPAD readings of 36.40 and $1.36, 1.28$ and 3.51 mg g^{-1} of chlorophyll a, b and total content, respectively. But, successive two sprays decreased these contents indicating oxidative stress induced with higher B accumulation in index leaves. Foliar sprays of B at the rate of 0.25 per cent accumulated relatively highest photosynthetic pigments ($42.50, 2.24 \text{ mg g}^{-1}$, 2.00 mg g^{-1} and 4.58 mg g^{-1} , respectively) after three successive sprays (WA-TS).

Discussion

From the present investigation, it was interesting to note that soil application of zinc may be attributed to its ability to maintain homeostasis of these ions which helps exclusion of Na^+ resulting in higher concentration of K^+ and Ca^{2+} in stems and roots. Potassium is helpful in preserving the turgidity and controlling vital enzyme activity of the cell. At the same time, plant growth and development are also hampered by shortage of K^+ ions and high Na^+/K^+ ratio. Therefore, applying zinc enhanced the better adaptation toward salt stress in rice by lowering the Na^+ , Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ ratios in them. Lowering Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ balance is a key trait of salinity tolerance which helps plants better adjust to salinity stress (Dey and Somaiah, 2022).

The foliar application of B had differential response to ion accumulation in rice roots and index leaves. Increasing rate of B from 0.25 to 0.75 % decreased the Na^+ , Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ while, K^+ and Ca^{2+} content increased in rice roots at all stages of crop growth indicating no toxic effect on root growth and ionic homoeostasis. The inability of B to translocate rapidly from shoot to root owing to its relative slow mobility through phloem tissues (Brown and shelp, 1997). However, B present in the phloem retranslocate to sink regions through restricted mobility to satisfy the demands plants. Thus, might have helped rice roots to overcome salinity stress through its critical role in strengthening the plant cell wall and also to maintain ionic homeostasis. The foliar application of B in index

leaves showed positive responses with increasing concentration after the 1st spray. However, after subsequent spray higher concentration of B *i.e.*, at 0.75 and 0.5 % affected the ionic homeostasis after second and third spray, respectively. The narrow range of B critical concentration make it either deficient or toxic, studies indicate that optimum range of B in rice (4 - 6 ppm) grain below and above levels either deficient or toxic, affecting ionic balance and metabolic activity (Milka, 2020).

Reactive oxygen species (ROS), such as ${}^1\text{O}_2$, H_2O_2 and OH^\bullet are produced by oxidative stress caused by an excessive build-up of Na^+ and Cl^- (Mehta *et al.*, 2010). In addition to harming the chloroplast and damages the photosynthetic pigment-protein machinery of photosynthesis, ROS is detrimental to the cell and its structure (Parihar *et al.*, 2015). Furthermore, salinity stress alters the water flux that affects function of stomata. To overcome stress under saline environment zinc and boron application helps in triggering the activation of antioxidant enzymes (CAT, APX, SOD and GR) that detoxify ROS radicals (Mogazy and Hanafy, 2022). With the reduction in ROS species proline also decrease, Proline is the most common organic solute that functions as an osmolyte and preserves the cytosolic pH and osmotic state of cells during salinity stress. This would help in, respectively cell turgidity via continuous influx of water (Singh *et al.*, 2022; Alharby *et al.*, 2021; Alzehrani *et al.*, 2021) and optimum levels of zinc and boron helps in maintaining the ionic homeostasis under saline conditions that protects photosynthetic pigments against oxidative stress (Massange-Sanchez *et al.*, 2021). The upregulation of ROS-scavenging enzymes that quickly break down the ROS radicals found in the thylakoid membranes of chloroplasts is the primary cause of this increase in photosynthetic pigment content (Singh *et al.*, 2022; Alhraby *et al.*, 2021).

Conclusion

The present study highlighted the soil application of zinc and foliar spray of boron evaluating their effect on physiological attributes of rice. The best results were observed with soil application of zinc at 40 kg ha^{-1} and foliar spray of boron at 0.25 %, which enhanced ionic concentrations, proline content, relative water content, SPAD values and chlorophyll contents. The combination of 40 kg ha^{-1} zinc and 0.5% boron foliar spray was the second most effective treatment for improving these physiological attributes.

Table 2: Effect of Zn and B on ions concentration in rice roots and index leaves at tillering stage (WA-FS)

Treatments	Roots					Index leaves				
	Na ⁺ (%)	K ⁺ (%)	Ca ²⁺ (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺	Na ⁺ (%)	K ⁺ (%)	Ca ²⁺ (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺
Soil application of zinc										
Zn₀	0.79	1.07	0.66	0.75	1.19	0.42	0.79	0.25	0.54	1.67
Zn₂₀	0.74	1.14	0.75	0.66	0.99	0.34	0.84	0.27	0.40	1.25
Zn₄₀	0.68	1.20	0.85	0.59	0.83	0.31	0.90	0.30	0.35	1.04
S.Em±	0.02	0.02	0.02	0.02	0.03	0.01	0.02	0.01	0.01	0.04
C.D @ 5 %	0.05	0.06	0.06	0.05	0.08	0.03	0.06	0.02	0.04	0.11
Foliar spray of boron										
B₀	0.76	1.11	0.72	0.70	1.07	0.38	0.83	0.26	0.47	1.46
B_{0.25}	0.75	1.12	0.74	0.68	1.04	0.36	0.84	0.27	0.44	1.35
B_{0.5}	0.73	1.16	0.77	0.65	0.97	0.35	0.85	0.28	0.41	1.27
B_{0.75}	0.71	1.16	0.78	0.63	0.93	0.33	0.86	0.28	0.39	1.20
S.Em±	0.02	0.02	0.02	0.02	0.03	0.01	0.02	0.01	0.01	0.04
C.D @ 5 %	NS	NS	0.07	0.06	0.09	0.03	NS	0.02	0.04	0.12
Interaction (Zn × B)										
Zn₀B₀	0.80	1.05	0.64	0.79	1.28	0.45	0.77	0.24	0.61	1.88
Zn₀B_{0.25}	0.79	1.06	0.66	0.76	1.22	0.42	0.79	0.25	0.56	1.69
Zn₀B_{0.5}	0.78	1.09	0.68	0.73	1.15	0.40	0.79	0.25	0.51	1.60
Zn₀B_{0.75}	0.77	1.10	0.68	0.71	1.13	0.39	0.82	0.26	0.48	1.51
Zn₂₀B₀	0.76	1.10	0.72	0.69	1.06	0.36	0.84	0.26	0.43	1.37
Zn₂₀B_{0.25}	0.75	1.11	0.73	0.68	1.03	0.35	0.84	0.27	0.41	1.28
Zn₂₀B_{0.5}	0.73	1.16	0.76	0.64	0.97	0.33	0.85	0.28	0.39	1.18
Zn₂₀B_{0.75}	0.71	1.18	0.78	0.62	0.90	0.32	0.85	0.28	0.38	1.15
Zn₄₀B₀	0.70	1.18	0.80	0.61	0.88	0.32	0.88	0.29	0.37	1.12
Zn₄₀B_{0.25}	0.70	1.20	0.83	0.60	0.87	0.32	0.90	0.30	0.35	1.09
Zn₄₀B_{0.5}	0.68	1.21	0.87	0.58	0.80	0.31	0.90	0.30	0.34	1.03
Zn₄₀B_{0.75}	0.66	1.21	0.88	0.56	0.75	0.29	0.90	0.31	0.32	0.94
S.Em±	0.03	0.04	0.04	0.04	0.05	0.02	0.04	0.01	0.02	0.07
C.D @ 5 %	0.10	0.11	0.11	0.11	0.16	0.06	0.12	0.03	0.07	0.21

Factor 1 : Soil application of ZnSO₄Zn₀ : No Zinc sulphateZn₂₀ : Zinc sulphate @ 20 kg ha⁻¹Zn₄₀ : Zinc sulphate @ 40 kg ha⁻¹

Factor 2 : Foliar spray of boric acid

B₀ : No Boric acidB_{0.25} : Boric acid @ 0.25 %B_{0.5} : Boric acid @ 0.50 %B_{0.75} : Boric acid @ 0.75 %**Table 3:** Effect of Zn and B on ions concentration in rice roots and index leaves at grand growth stage (WA-SS)

Treatments	Roots					Index leaves				
	Na ⁺ (%)	K ⁺ (%)	Ca ²⁺ (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺	Na ⁺ (%)	K ⁺ (%)	Ca (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺
Soil application of zinc										
Zn₀	0.86	1.09	0.66	0.79	1.21	0.48	1.04	0.29	0.46	1.64
Zn₂₀	0.79	1.13	0.75	0.70	0.98	0.36	1.19	0.32	0.31	1.14
Zn₄₀	0.73	1.21	0.85	0.61	0.83	0.39	1.40	0.35	0.28	1.13
S.Em±	0.02	0.02	0.02	0.02	0.03	0.01	0.02	0.00	0.01	0.04
C.D @ 5 %	0.05	0.06	0.06	0.05	0.08	0.03	0.07	0.01	0.04	0.10
Foliar spray of boron										
B₀	0.82	1.12	0.72	0.74	1.09	0.45	1.15	0.31	0.40	1.46
B_{0.25}	0.80	1.13	0.74	0.70	1.03	0.40	1.22	0.32	0.34	1.27
B_{0.5}	0.80	1.15	0.77	0.69	1.00	0.37	1.27	0.33	0.30	1.15
B_{0.75}	0.77	1.17	0.78	0.65	0.93	0.42	1.21	0.31	0.36	1.34
S.Em±	0.02	0.02	0.02	0.02	0.03	0.01	0.03	0.01	0.01	0.04
C.D @ 5 %	NS	NS	0.07	0.06	0.09	0.04	0.08	0.02	0.04	0.12

Interaction (Zn × B)										
Zn₀B₀	0.89	1.07	0.64	0.82	1.31	0.51	1.01	0.28	0.50	1.79
Zn₀B_{0.25}	0.86	1.07	0.66	0.79	1.25	0.48	1.04	0.29	0.46	1.64
Zn₀B_{0.5}	0.86	1.10	0.68	0.78	1.20	0.43	1.10	0.30	0.39	1.44
Zn₀B_{0.75}	0.84	1.12	0.68	0.75	1.10	0.49	1.02	0.29	0.48	1.69
Zn₂₀B₀	0.82	1.12	0.72	0.73	1.05	0.41	1.13	0.31	0.37	1.34
Zn₂₀B_{0.25}	0.80	1.13	0.73	0.71	1.00	0.34	1.20	0.32	0.29	1.07
Zn₂₀B_{0.5}	0.80	1.14	0.76	0.70	0.97	0.33	1.24	0.33	0.27	1.00
Zn₂₀B_{0.75}	0.76	1.14	0.78	0.66	0.92	0.36	1.19	0.31	0.30	1.14
Zn₄₀B₀	0.76	1.16	0.80	0.65	0.90	0.41	1.30	0.33	0.32	1.25
Zn₄₀B_{0.25}	0.74	1.20	0.83	0.61	0.84	0.39	1.42	0.35	0.27	1.10
Zn₄₀B_{0.5}	0.73	1.22	0.87	0.60	0.82	0.36	1.47	0.36	0.24	0.99
Zn₄₀B_{0.75}	0.70	1.25	0.88	0.55	0.76	0.40	1.41	0.34	0.29	1.19
S.Em±	0.03	0.04	0.04	0.03	0.06	0.02	0.05	0.01	0.02	0.07
C.D @ 5 %	0.10	0.13	0.11	0.10	0.16	0.06	0.13	0.03	0.07	0.21

Factor 1 : Soil application of ZnSO₄Zn₀ : No Zinc sulphateZn₂₀ : Zinc sulphate @ 20 kg ha⁻¹Zn₄₀ : Zinc sulphate @ 40 kg ha⁻¹

Factor 2 : Foliar spray of boric acid

B₀ : No Boric acidB_{0.25} : Boric acid @ 0.25 %B_{0.5} : Boric acid @ 0.50 %B_{0.75} : Boric acid @ 0.75 %

Table 4: Effect of Zn and B on ions concentration in rice roots and index leaves at panicle initiation stage (WA-TS)

Treatments	Roots					Index leaves				
	Na ⁺ (%)	K ⁺ (%)	Ca ²⁺ (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺	Na ⁺ (%)	K ⁺ (%)	Ca (%)	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺
Soil application of zinc										
Zn₀	1.02	1.19	0.75	0.87	1.36	0.51	1.37	0.30	0.38	1.75
Zn₂₀	0.91	1.30	0.82	0.70	1.11	0.43	1.45	0.33	0.29	1.34
Zn₄₀	0.76	1.41	0.93	0.55	0.83	0.36	1.80	0.36	0.20	1.00
S.Em±	0.02	0.02	0.02	0.02	0.03	0.01	0.03	0.01	0.01	0.04
C.D @ 5 %	0.05	0.07	0.06	0.06	0.09	0.04	0.09	0.02	0.03	0.11
Foliar spray of boron										
B₀	0.95	1.24	0.80	0.78	1.21	0.47	1.49	0.31	0.33	1.56
B_{0.25}	0.91	1.28	0.83	0.72	1.13	0.40	1.60	0.34	0.25	1.19
B_{0.5}	0.88	1.32	0.84	0.67	1.06	0.42	1.55	0.33	0.27	1.29
B_{0.75}	0.85	1.36	0.86	0.63	1.00	0.45	1.52	0.32	0.30	1.42
S.Em±	0.02	0.03	0.03	0.02	0.04	0.02	0.03	0.01	0.01	0.04
C.D @ 5 %	0.06	0.08	NS	0.07	0.10	0.05	0.10	0.02	0.03	0.13
Interaction (Zn × B)										
Zn₀B₀	1.10	1.10	0.73	1.00	1.51	0.57	1.30	0.28	0.44	2.06
Zn₀B_{0.25}	1.01	1.20	0.75	0.84	1.35	0.46	1.43	0.31	0.32	1.48
Zn₀B_{0.5}	1.00	1.21	0.75	0.83	1.32	0.48	1.39	0.30	0.34	1.59
Zn₀B_{0.75}	0.98	1.24	0.77	0.79	1.26	0.53	1.35	0.29	0.40	1.86
Zn₂₀B₀	0.97	1.26	0.80	0.77	1.22	0.45	1.48	0.31	0.30	1.48
Zn₂₀B_{0.25}	0.95	1.26	0.81	0.76	1.18	0.42	1.50	0.34	0.27	1.23
Zn₂₀B_{0.5}	0.87	1.33	0.83	0.66	1.05	0.43	1.44	0.33	0.28	1.28
Zn₂₀B_{0.75}	0.83	1.33	0.83	0.61	0.98	0.44	1.40	0.32	0.30	1.37
Zn₄₀B₀	0.78	1.35	0.86	0.58	0.90	0.39	1.69	0.34	0.23	1.13
Zn₄₀B_{0.25}	0.78	1.37	0.92	0.57	0.84	0.32	1.86	0.37	0.17	0.86
Zn₄₀B_{0.5}	0.76	1.40	0.95	0.54	0.80	0.35	1.83	0.36	0.20	1.00
Zn₄₀B_{0.75}	0.74	1.50	0.98	0.50	0.76	0.36	1.82	0.35	0.19	1.02
S.Em±	0.03	0.05	0.04	0.04	0.06	0.03	0.06	0.01	0.02	0.07
C.D @ 5 %	0.10	0.14	0.13	0.12	0.18	0.09	0.17	0.04	0.05	0.22

Factor 1 : Soil application of ZnSO₄Zn₀ : No Zinc sulphateZn₂₀ : Zinc sulphate @ 20 kg ha⁻¹Zn₄₀ : Zinc sulphate @ 40 kg ha⁻¹

Factor 2 : Foliar spray of boric acid

B₀ : No Boric acidB_{0.25} : Boric acid @ 0.25 %B_{0.5} : Boric acid @ 0.50 %B_{0.75} : Boric acid @ 0.75 %

Table 5: Effect of Zn and B on chlorophyll a, chlorophyll b and total chlorophyll in index leaves of rice at different growth stages

Treatments	Chlorophyll a (mg g ⁻¹)			Chlorophyll b (mg g ⁻¹)			Total chlorophyll (mg g ⁻¹)		
	WA-FS	WA-SS	WA-TS	WA-FS	WA-SS	WA-TS	WA-FS	WA-SS	WA-TS
Soil application of zinc									
Zn₀	0.66	0.90	1.41	0.55	0.81	1.18	2.66	3.25	3.53
Zn₂₀	0.93	1.33	1.76	0.84	1.13	1.64	3.08	3.34	3.89
Zn₄₀	1.26	1.60	2.14	1.14	1.56	1.93	3.45	3.73	4.37
S.Em±	0.02	0.03	0.03	0.02	0.03	0.03	0.07	0.09	0.08
C.D @ 5 %	0.06	0.10	0.10	0.07	0.09	0.08	0.20	0.27	0.23
Foliar spray of boron									
B₀	0.85	1.16	1.64	0.72	1.03	1.43	2.93	3.27	3.76
B_{0.25}	0.92	1.31	1.88	0.82	1.24	1.70	3.03	3.56	4.07
B_{0.5}	0.99	1.36	1.82	0.89	1.30	1.65	3.11	3.58	3.99
B_{0.75}	1.05	1.27	1.75	0.94	1.10	1.56	3.18	3.34	3.91
S.Em±	0.02	0.04	0.04	0.03	0.04	0.03	0.08	0.11	0.09
C.D @ 5 %	0.07	0.12	0.11	0.08	0.11	0.09	0.23	0.31	0.27
Interaction (Zn × B)									
Zn₀B₀	0.54	0.85	1.30	0.45	0.72	1.00	2.49	3.12	3.44
Zn₀B_{0.25}	0.64	0.91	1.51	0.53	0.83	1.32	2.61	3.29	3.68
Zn₀B_{0.5}	0.68	0.95	1.43	0.57	0.92	1.28	2.71	3.32	3.55
Zn₀B_{0.75}	0.77	0.90	1.41	0.65	0.78	1.13	2.82	3.29	3.46
Zn₂₀B₀	0.85	1.21	1.63	0.75	0.95	1.45	2.99	3.33	3.77
Zn₂₀B_{0.25}	0.91	1.38	1.89	0.84	1.28	1.77	3.01	3.36	3.96
Zn₂₀B_{0.5}	0.96	1.39	1.78	0.89	1.29	1.71	3.11	3.30	3.94
Zn₂₀B_{0.75}	1.01	1.32	1.74	0.89	1.01	1.62	3.20	3.35	3.90
Zn₄₀B₀	1.15	1.43	2.00	0.97	1.41	1.83	3.32	3.37	4.06
Zn₄₀B_{0.25}	1.21	1.63	2.24	1.09	1.62	2.00	3.48	4.02	4.58
Zn₄₀B_{0.5}	1.32	1.74	2.23	1.21	1.68	1.97	3.50	4.13	4.47
Zn₄₀B_{0.75}	1.36	1.58	2.10	1.28	1.52	1.92	3.51	3.39	4.37
S.Em±	0.04	0.07	0.07	0.05	0.06	0.05	0.13	0.18	0.16
C.D @ 5 %	0.12	0.21	0.20	0.14	0.19	0.16	0.39	0.54	0.47

Note: WA-FS: Week after first spray, WA-SS: Week after second spray, WA-TS: Week after third spray

Factor 1 : Soil application of ZnSO₄

Zn₀ : No Zinc sulphate
Zn₂₀ : Zinc sulphate @ 20 kg ha⁻¹
Zn₄₀ : Zinc sulphate @ 40 kg ha⁻¹

Factor 2 : Foliar spray of boric acid

B₀ : No Boric acid
B_{0.25} : Boric acid @ 0.25 %
B_{0.5} : Boric acid @ 0.50 %
B_{0.75} : Boric acid @ 0.75 %

Plate 1 : Layout of the field experimental plot

Plate 2 : General view of experimental plot

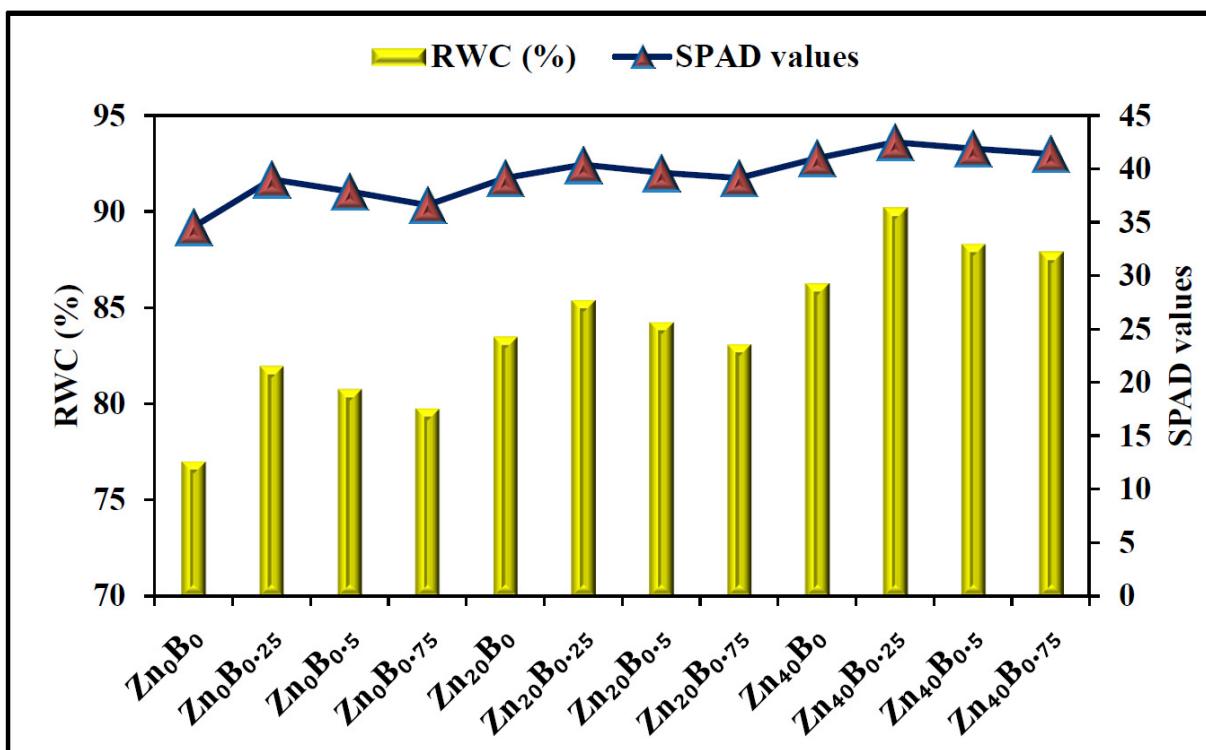


Fig. 1: Effect of Zn and B on RWC and SPAD values in rice index leaves at panicle initiation stage (WA-TS)

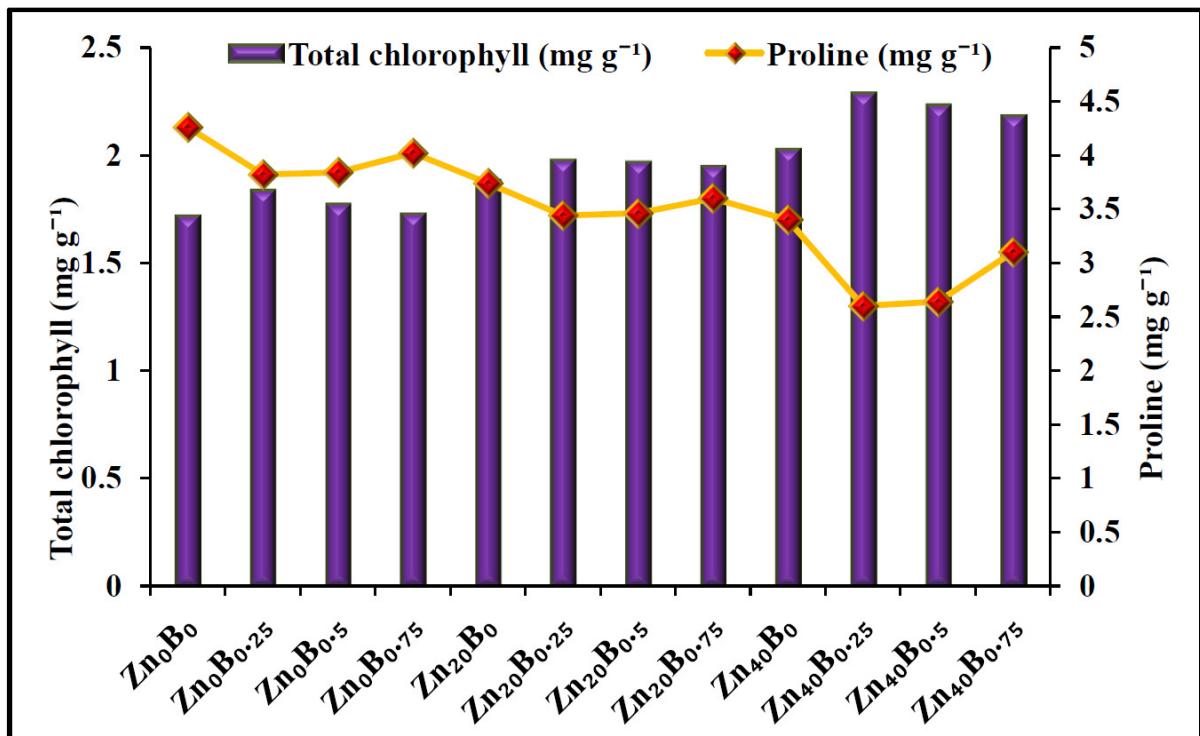


Fig. 2: Effect of Zn and B on total chlorophyll and proline content in rice index leaves at panicle initiation stage (WA-TS)

References

Alharby, H. F., Nahar, K., al-Zahrani, H. S., Hakeem, K. R. and Hasanuzzaman, M., (2021). Enhancing salt tolerance in soybean by exogenous boron intrinsic study of the ascorbate-glutathione and glyoxalase pathways. *Plants*, **10**(3), 1-13.

Al-Zahrani, H. S., Alharbg, H. F., Hakeem, K. R. and Rehman, R. U. (2021). exogenous application of zinc to mitigate the salt stress in *vigna radiata* (L.) wilkez physiological and biochemical processes. *plants*, **10**(5), 1005-1027.

Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. *Plant Physiol.*, **24**(1), 1-5.

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water- stress studies. *Plant Soil.*, **39**(2), 205-207.

Brown, P. H. and Shelp, B. J. (1997). Boron mobility in plants, *Plant and Soil.*, **193**(8), 85-101.

Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. N., Francia, E., Mare, C., Tondelli, A. and Stanca, A. M. (2008). Drought tolerance improvement in crop plants. An integrated view from breeding to genomics. *Field Crops Res.*, **105**(3), 1-14.

Davenport, R., James, R., Zakrisson-Plogander, A., Tester, M. and Munns, R., (2005). Control of sodium transport in durum wheat. *Plant Physiol.*, **137**(9), 807-818.

Dey, A. and Somaiah, S. (2022). Green synthesis and characterization of zinc oxide nanoparticles using leaf extract of *Thryallis glauca* (Cav.) Kuntze and their role as antioxidant and antibacterial. *Microsc. Res. Tech.*, **85**(8), 2835-2847.

Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P. and Yu, F. (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. *Plant Physiol. Biochem.*, **161**(5), 122-130.

FAO (Food and agriculture organization), 2022. <http://www.fao.org/faostat/en/#data>

Gholipoor, M., Soltani, A., Shekari, F. and Shekari, F. B. (2002). Effects of salinity on water use efficiency and its components in chickpea (*Cicer arietinum* L.). *Acta Agronomica Hungarica*, **50**(7), 127-134.

Hafeez, B., Khanif, Y. M. and Salee, M. (2013). Role of zinc in plant nutrition- a review. *American J. Exp. Agric.*, **3**(2), 374-391.

Indiastat (2022). IndiaStat database (<https://www.indiastat.com>).

Latif, A. H., Abualhmad, M. F. and Abdelfattah, K.E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (*Lupinus termis*). *Plants. J. Plant Growth Regul.*, **36**(8), 60-70.

Massange-Sachez, J. A., Sanchez-Hernandez, C. V., Hernandez-Herrera, R. M. and Palmeros-Suarez, P.A. (2021). The biochemical mechanisms of salt tolerance in plants. *Plant Stress Physiol. Perspect. Agric.*

Mehta, P., Jajoo, A., Mathur, S. and Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. *Plant Physiol. Biochem.*, **48**(4), 16-20.

Milka, B. J. (2020). Boron toxicity and deficiency in agricultural plants. *Int. J. mol. Sci.*, **21**(4), 2-20.

Mogazy, A. M. and Hanafy, R. S. (2022). Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on *Vicia faba* plants. *J. Soil Sci. Plant Nutr.*, **22**(1), 2647-2662.

Munns, R. (2002). Comparative physiology of salt and water stress. *Plant Cell Environ.*, **25**(4), 239-250.

Oosterhuis, D.M. (2001). Physiology and nutrition of high yielding cotton in the USA. In. *Informacoas Agronomicas N-Setembrio*. pp. 18-24.

Parihar, P., Singh, S., Singh, R., Singh, V. P. and Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies, A review. *Environ. Sci. Pollut. Res.*, **22**(5), 4056-4075.

Piper, C. S. (1966). *Soil and Plant Analysis*, Inter-science Publishers, Inc., New York. pp. 368.

Prida, K. A. and Das, B. A. (2005). Salt tolerance and salinity effects on plants. *Rev. Ecotoxicol. Environ. Saf.*, **60**(3), 324-349.

Ramezani, M., Seghatoleslami, M., Mousavi, G. and Sayyari-Zahan, M. H. (2012). Effect of salinity and foliar application of iron and zinc on yield and water use efficiency of ajowan (*Carum copticum*). *Int. J. Agric. Crop Sci.*, **4**(2), 421-426.

Singh, A., Sengar, R. S., Rajput, V. D., Minkina, T. and Singh, R. K. (2022). Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices *Agric.*, **12**(4), 1014-1026.

Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Alam, P. and Hayat, S. (2021). Nanoparticles enhances the salinity toxicity tolerance in *Linum usitatissimum* L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. *Ecotoxicol. Environ. Saf.*, **213**(4), 112-123.

Tester, M. and Dvenport, R. (2003). Na^+ tolerance and Na^+ transport in higher plants. *Ann. Bot.*, **9**(3), 503-52

Wang, Q., Longdou, L. U., Xiaoqin, W. U., Yiqin L. I. and Jinxing, L.I.N. (2003). Boron influences pollen germination and pollen tube growth in *Picea meyeri* tree. *Physiol.*, **23**(4), 345-351.

Weatherley, P.E. (1950). Studies in water relation of cotton plants. The field measurement of water deficit in leaves. *New Phytol.*, **49**(5), 81.